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I-56127 Pisa, Italy
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Abstract
The Raise and Peel model is a recently proposed one-dimensional statistical
model describing a fluctuating interface. The evolution of the model follows
from the competition between adsorption and desorption processes. The model
is non-local due to the possible occurrence of avalanches. At a special ratio of
the adsorption–desorption rates, the model is integrable and many rigorous
results are known. Off the critical point, the phase diagram and scaling
properties are not known. In this paper, we search for indications of phase
transition studying the gap in the spectrum of the non-Hermitian generator of
the stochastic interface evolution. We present results for the gap obtained from
exact diagonalization and from Monte Carlo estimates derived from temporal
correlations of various observables.

PACS numbers: 05.10.−a, 05.40.−a, 05.10.Ln

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Raise and Peel model (RPM) [1] is a one-dimensional adsorption–desorption model
of a fluctuating interface defined on a discrete lattice with restricted solid-on-solid rules.
The adsorption process raises the interface while in the desorption process the top layer of
the interface evaporates (it ‘peels’ the interface) through non-local avalanches. The RPM
shows self-organized criticality [2, 3]. The details of the dynamic will be presented in
subsection 2.1.
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The continuum time limit of the model is characterized by a single coupling, describing
the ratio u of the interface adsorption/desorption rates. At u = 1, the model describes a c = 0
logarithmic conformal field theory [4] with a dynamic critical exponent z = 1. It can also be
analytically studied using its hidden Temperley–Lieb algebra [1, 5].

At this value of the adsorption/desorption ratio, many rigorous properties of the RPM are
known about its equilibrium distribution, whose theoretical properties are related to alternating
sign matrices and combinatorics [6, 7]. In the continuum limit in the temporal direction, the
ratio u can be any positive real number. In this paper, we shall study the region 0 < u � 1.

Away from the Temperley–Lieb rates, much less is known about the RPM. In the
preliminary analysis of [1], the RPM at 0 < u < 1 has been proposed to have a critical
point u∗, with 0 < u∗ < 1, separating two phases. The phase at 0 < u < u∗ is massive in
the sense that the gap E1 of the non-Hermitian generator of the stochastic temporal evolution
tends to a finite positive value for large lattices. The phase in the region u∗ � u � 1 is instead
a massless phase. The analysis of the behaviour of E1(u, L) as a function of u and the lattice
size L has been crucial in making this conjecture.

In this paper, we extend the analysis by pushing exact diagonalization up to the remarkable
lattice length L = 26. We also propose a Monte Carlo estimate of E1 that we test up to L = 64.

The analysis of the gap from these extended data provides information about the RPM
phase diagram. Also, and most important, at the methodological level, it explores the finite
size scaling properties of a non-local model discussing in a specific case the limits of the
information that can be gained from these typical lattice sizes.

The outline of the paper is as follows. In section 2, we recall the definition of the RPM
and discuss the numerical simulation technique in the (time) continuum limit. In section 3,
we recall the operatorial formulation of the model and summarize the conjectures about its
phase diagram. Results on the exact diagonalization on larger lattices are shown in section 4.
Section 5 gives an estimate of the first excited level of the energy E1 of this matrix while
sections 6 and 7 present our Monte Carlo procedure to simulate the model and the analysis of
the resulting data. Finally, the conclusions are summarized in section 8.

2. The Raise and Peel model

2.1. Definition of the model

The RPM belongs to the class of restricted solid-on-solid (RSOS) models. It is defined on a
one-dimensional lattice of size L + 1, with even L ∈ 2N. The sites are numbered from 0 to L,
and at each site we assign a non-negative height hi with RSOS constraints

|hi+1 − hi | = 1, (1)
h0 = hL = 0. (2)

The space state HL is discrete and its dimension is

dimHL = L!

(L/2 + 1)(L/2)!2
. (3)

To assign a stochastic discrete dynamics on the space state HL, we first choose the two
probabilities ua, ud ∈ (0, 1). In the language of [1], they are associated with adsorption and
desorption elementary processes. We then define the slope at site i as si = 1

2 (hi+1 − hi−1).
The slope can only take values si ∈ {−1, 0, 1}.
At each temporal step, we make the following stochastic move:

(i) choose at random a site 1 � i � L − 1 with uniform probability 1/(L − 1);
(ii) take the following actions (sub-moves):
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(α): if si = 0 and hi > hi−1, do nothing;
(β): if si = 0 and hi < hi−1, do hi → hi + 2 with probability ua;
(γ ): if si = 1, with probability ud , find j > i such that hj = hi and hk > hi for all

i < k < j and make the transformation hk → hk − 2 on all the internal sites
i < k < j ;

(γ ′): if si = −1, with probability ud , find j < i such that hj = hi and hk > hi for all
j < k < i and make the transformation hk → hk − 2 on all the internal sites
j < k < i.

It is easy to show that Nγ = Nγ ′ .
In the following, we shall be interested in the time continuum limit of this stochastic

chain. This is discussed in the next section where we also give details of how the continuous
stochastic dynamics is practically simulated.

2.2. (Time) continuum limit and numerical simulation of its stochastic dynamics

The continuum limit in the temporal direction is taken at fixed L, by fixing the ratio u ≡ ua/ud

and sending ua, ud → 0. The ratio u can be any positive real number. However, in this work,
we shall consider mainly the region 0 < u � 1, a restriction that we shall always assume if
not said differently. In the conclusions, we shall briefly mention the case u > 1.

In the limit ud, ua → 0, the lattice configuration is often frozen for many Monte Carlo
iterations. Therefore, given a configuration s at time t, it would be very inefficient to perform
the simulation for each time step t, t + 1, . . .; it is better to compute the time interval T during
which s remains unchanged, and the new configuration s ′ at time t + T .

We group the sites into four classes according to the above α, β, γ and γ ′ and denote by
Nα,Nβ , etc, the numbers of sites of a certain class. We compute the total transition probability
p = (uaNβ + 2udNγ )/(L − 1). The probability distribution of T is proportional to (1 − p)T

and can be sampled in the usual way by taking the logarithm of a uniform random number.
Finally, we extract the site class β, γ or γ ′ with probability proportional to uaNβ, udNγ , udNγ ,
respectively, and pick the site i in the class with uniform probability.

3. Operatorial description of the RPM

It is convenient to discuss the (continuum time limit of the) RPM and its dynamics with a
Hilbert space formalism where we can easily rephrase all statements concerning the underlying
stochastic process. We associate the vector |s〉 with each configuration s of the RPM. We denote
by H the finite-dimensional complex vector space having these states as an orthonormal basis

〈s|s ′〉 = δss ′ . (4)

The subset HS ⊂ H is the set of stochastic vectors of the form∑
i

pi |si〉, 0 � pi � 1,
∑

i

pi = 1. (5)

They can be used to describe the state probability distribution at a certain time.
We assign a special name to the state

|σ 〉 =
∑

s

|s〉. (6)

It can be used to implement the sum over all states by taking scalar products.
The evolution of the RPM is described by means of a non-Hermitian rate matrix H. The

specific matrix elements of H for L = 6 can be found in [1].
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An important property of H is the conservation of probability expressed by the relation

〈σ |H = 0. (7)

Given H, we define the evolution operator U(t) = e−tH . It has the following meaning:

U(t)s ′s = 〈s ′|U(t)|s〉 = Prob(s, t0 → s ′, t0 + t). (8)

In particular, if |ψ〉 ∈ HS is a stochastic vector describing a statistical ensemble of states at
time t0, then the stochastic vector at time t0 + t is given by

U(t)|ψ〉 ∈ HS. (9)

The eigenvalues of H can be complex, and we sort them by increasing real part

H |ψn〉 = En|ψn〉, 0 = E0 < Re E1 < Re E2 < · · · . (10)

It is convenient to introduce the expansion of the eigenvectors in terms of the single
configuration basis

|ψn〉 =
∑

s

ψn,s |s〉. (11)

The eigenvectors |ψn〉 are not necessarily orthogonal. In the following, we shall always assume
that they are a basis of the state space. The condition Re Ei � 0 expresses the convergence
property of the stochastic process described by H. Due to this condition, we have

lim
t→∞ U(t)s ′s = ψ0,s ′ , (12)

independent of the initial state s. In other words, every statistical ensemble converges
asymptotically to the equilibrium distribution specified by the components of the lowest
eigenvector. Due to the meaning of |ψ0〉, it is convenient to choose the normalization of |ψ0〉
by requiring that it belongs to HS :∑

s

ψ0,s = 1, or 〈σ |ψ0〉 = 1, (13)

in agreement with its probabilistic interpretation.

3.1. The RPM away from the Temperley–Lieb point

The special point u = 1 defines the so-called Temperley–Lieb (TL) rates. At this value of the
adsorption/desorption ratio, the RPM can be connected to the dense O(1) or TL loop model
[8] and many rigorous properties are known about its equilibrium distribution.

In particular, at u = 1, the model is described by c = 0 logarithmic conformal field theory
(LCFT) with a dynamic critical exponent z = 1.

Away from the Temperley–Lieb rates, much less is known about the RPM. The aim of
this paper is precisely the investigation of the phase structure of the model with respect to the
rate variable u.

Following the analysis of [1], the existence of possible critical points for u < 1 can be
studied by computing the first excited level E1 as a function of the rate u and the lattice size
L. From exact diagonalization up to L = 16 and the finite size scaling analysis, the authors
of [1] have claimed that the RPM exists in two phases when u < 1. The first phase is called
massive and is realized for 0 < u < u∗. The second phase, for u∗ � u � 1, is a massless
phase.
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Figure 1. Exact diagonalization data for the function LE1(u, L). The various lines show the
results at sizes L = 8, 10, . . . , 24, 26.

As we mentioned in the introduction, the naming refers to the different behaviour of
E1(u, L) at large L. In a massive phase, E1 tends to a positive constant as L → ∞. In a
massless phase, it tends to zero. At u = 1, we know rigorously that LE1 tends to a positive
constant.

The finite size analysis of [1] studies the crossing of LE1(u, L) between the curves at the
two values L and L + 2 with L � 16. Two crossings are observed. The smaller one appears
to converge to some value u∗ around 0.5 as L increases. The larger crossing is less stable and
it is possible to conjecture that it tends to 1 at infinite L. Due to the small lattice sizes, these
conclusions are quite preliminary and deserve a more detailed investigation.

In the following sections, we shall first discuss the outcome of an improved analysis
based on exact diagonalization up to the size L = 26. Then, we shall illustrate a Monte Carlo
method to compute E1 and numerical data up to L = 64. These are less precise than exact
diagonalization points, but can complement them, as we shall illustrate.

To conclude this section, we would like to add a general comment. In principle, it is
possible to study the critical behaviour of the RPM by alternative methods, in particular by
studying the size and u dependence of statistical averages over very large lattices. In our
analysis, we concentrated on the (difficult) measure of E1 with the precise aim of extending
the above analysis.

4. Exact diagonalization on large lattices

We have pushed the exact diagonalization of the RPM Hamiltonian up to the size L = 26,
using the software package ARPACK [9]. A plot of LE1(u, L)) as a function of u for the
various considered L is shown in figure 1. From that figure, we can see the existence of two
crossings between the curves at L and L + 2. We shall denote them as uleft(L) and uright(L)

with uleft(L) < uright(L). We want to compute the extrapolations

u∗
left, right = lim

L→∞
uleft, right(L). (14)
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Figure 2. Exact diagonalization data for the two crossings uleft, right(L) discussed in section 4.

In figure 2, we show the crossings uleft(L), uright(L) as functions of 1/L to test convergence.
The left part of the figure shows uleft(L). Data are accurately fit by the simple function

0.6912(1 − 8/L + 48/L2). (15)

The integer coefficients are empirical, but the quality of the fit is remarkable with χ2 =
4.6 × 10−7.7 Our estimated extrapolation u∗

left = 0.6912 suggests the existence of a critical
point in an infinite volume that separates different phases of the model.

Of course, without further analytical insight, it is also perfectly possible that the above
extrapolation is misleading and that we are working on a lattice which is too small to extrapolate
reliably to the true infinite size limit. We take this kind of comment up further in the concluding
remarks.

The analysis is similar for uright(L) shown in the right part of the figure. In this case,
we also tried a polynomial in 1/L, but did not find a simple expression for the coefficients of
the various powers of 1/L. The figure shows three curves obtained by fitting the first 8, 7, 6
data points with the highest L. As data points with smaller L are discarded, the extrapolated
estimate for u∗

right moves closer and closer to the special value 1. Thus, our data support the
conjecture u∗

right = 1 with no additional non-trivial critical point. The convergence in L is
quite slow; this is not surprising, given the non-local nature of the dynamics.

At size L = 26, the state space dimension is 742 900. For computational reasons, it is
not sensible to push the exact diagonalization beyond this point. Indeed, the convergence rate
can be judged from the above figures and is not dramatically fast.

For this reason, it is convenient to resort to Monte Carlo methods. In the next sections,
we shall first describe our theoretical approach, and then discuss the actual measurements of
E1 on larger lattices.

7 Here and in the following, we denote by χ2 the sum of the squares of the differences between the data points and
the values of the fitting function.
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5. Stochastic averages and estimate of E1(u, L)

The RPM is a Markov chain where the non-Hermitian Hamiltonian plays the role of a rate
matrix. Our analysis of the phase structure of the RPM is based on the calculation of the first
excited level E1 of this matrix. In this section, we recall the basic formalism that allows E1 to
be extracted from the time evolution of certain stochastic averages evaluated over the chain.

5.1. Expansion of vectors

We assumed that the eigenvectors of H are a basis of H. Hence, any state |φ〉 can be expanded
in terms of the eigenvectors of H:

|φ〉 =
∑
n�0

cn|ψn〉. (16)

The coefficient c0 can be determined. We apply U(t) to the above expansion and take the
t → +∞ limit. Since En > 0 for n > 0, we find

lim
t→+∞ U(t)|φ〉 = c0|ψ0〉. (17)

Taking the scalar product with |σ 〉 and exploiting 〈σ |U = 〈σ | as well as the chosen
normalization of |ψ0〉 we conclude that c0 = 〈σ |φ〉, i.e.,

|φ〉 = 〈σ |φ〉|ψ0〉 +
∑
n�1

cn|ψn〉. (18)

5.2. Time averages and their operator expression

Let us consider various functions {Ai(s)}1�i�N of the RPM configurations. The stochastic
N-point averages times {ti} starting from a given configuration s0 will be denoted by

Es0

[
N∏

i=1

Ai

(
sti

)]
, (19)

where the expectation is over all realizations of the stochastic process {st }t�0 with the assigned
initial condition. The equilibrium averages and correlations are independent of the initial state
and are defined as

E[A] = lim
t→+∞ Eany[A(t)], (20)

E[A(0)B(τ)] = lim
t→+∞ Eany[A(t)B(t + τ)]. (21)

· · · · (22)

As a preparation to the calculation of stochastic time averages, we associate an operator
with each function A(s) of the RPM configuration s. The rule is trivial. We associate with
A(s) the operator defined by the following diagonal matrix elements in the |s〉 basis:

〈s|A|s ′〉 = A(s)δss ′ . (23)

Consider now the stochastic average of a single A at time t, starting from the fixed
configuration s0. By definition, we can write

Es0 [A(st )] = 〈σ |AU(t)|s0〉. (24)
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From the above expansion, we have

|s0〉 = |ψ0〉 +
∑
n�1

cn|ψn〉 (25)

with certain coefficients cn. Thus,

Es0 [A(st )] = 〈σ |A|ψ0〉 +
∑
n�1

cn e−tEn〈σ |A|ψn〉. (26)

Of course, the asymptotic value is precisely the equilibrium average

E[A] = 〈σ |A|ψ0〉 =
∑

s

Asψ0,s . (27)

Another example is the self-correlation of A with lag τ . By definition, this is

E[A(0)A(τ)] =
∑
ss ′

As ′ prob(s → s ′)Asψ0,s

=
∑
ss ′

As ′U(τ)s ′sAsψ0,s = 〈σ |AU(τ)A|ψ0〉. (28)

Again, we have the expansion

A|ψ0〉 = b0|ψ0〉 +
∑
n�1

bn|ψn〉 (29)

for certain coefficients bn. Then, the large τ behaviour of the connected correlation is given
by

E[A(0)A(τ)] − E[A]2 =
∑
n�1

cn〈σ |A|ψ0〉 e−Enτ . (30)

6. Monte Carlo simulation and estimate of E1

The Monte Carlo procedure consists of the following steps.
A thermalized configuration s̃ is generated by a straightforward implementation of the

update procedure described in subsection 2.2.
A set of b branches is generated by running b times the update procedure for a time

duration τ , each branch starting from s̃, with a different sequence of random numbers. Along
each branch, the values of the observables Ai(t) are averaged over time intervals of size 
t ; the
resulting values are used to estimate the expectation value of Ai(r
t) with initial conditions
s(0) = s̃:

Ai,r = Āi(r
t) = 1


t

∫ (r+1/2)
t

(r−1/2)
t

〈σ |AU(t)|s̃〉. (31)

We selected the following set of observables:

A0 = hL/2, A1 =
L−1∑
i=1

hi, Ad+2 =
L−1−d∑

i=1

hihi+d , 0 � d � 14. (32)

We take as value and statistical error of Ai,r the average and standard deviation over the
branches at a fixed time interval. We typically choose b = 108.

The resulting data for Ai,r are fitted to the two-exponential formula

Ai,r = a
(i)
0 + a

(i)
1 exp

(−µ
(i)
1 r
t

)
+ a

(i)
2 exp

(−µ
(i)
2 r
t

)
, (33)



Critical behaviour in a non-local interface model 2917

5555
5

555555
5

5

5

5

5

5

5

5

6666
6

666666
6

6

6

6

6

6

6

6

6

6

7777
777777

7
7

7
7

7

7

7

7

7

7

7

88
8888888

88
8

8
8

8
8

8
888

8

9
999999999

9
9

9
9

9
9

9999

9

a
a

aaaaaaaa
aaaa

a
aaa

a

a

b

b
bbbbbbbb

bbbb
b

b
bbb

b

b

cc
c

cccccccc
c

c
c

c

c

c
c

cc

c

dd
d

d

dddddddd
d

d
d

d

d

d

d

d

eeee
e

ee
eeee

e
e

e

e

e

e

e

e

0 20 40 60 80 100 120 140 160
t
min

0.0132

0.0134

0.0136

0.0138

0.0140

0.0142

µ1

h
h(L/2)

h
2

h
i
 h

i+2
h

i
 h

i+3

h
i
 h

i+4
h

i
 h

i+55 5

h
i
 h

i+66 6

h
i
 h

i+77 7

h
i
 h

i+88 8

h
i
 h

i+99 9

h
i
 h

i+10a a

h
i
 h

i+11b b

h
i
 h

i+12c c

h
i
 h

i+13d d

h
i
 h

i+14e e

Figure 3. µ1 versus tmin for u = 0.9 and L = 32. Discarding A0 (squares) and A1 (circles), we
estimate µ1 = 0.0135–0.0140.

with µ1 < µ2, for r
t > tmin. The value and error of µ1 are estimated checking the stability of
the fit versus tmin and the consistency of the best-fit values of µ1 between different observables.

The procedure is repeated starting the branching process from several statistically
independent configurations s̃ and the resulting values of µ1 are analysed. If a configuration
gives a value inconsistent with the others, it is removed. The value and error of µ1 are estimated
from the remaining configuration by a standard statistical analysis; the error is multiplied by
the scale factor s =

√
χ2/nd.o.f if s > 1, i.e., if the values are not fully consistent within

errors; we consider s2 > 6 a warning sign of possible troubles. The resulting value and error
of µ1 are directly an estimate of E1.

A typical example is shown in figure 3. Some branch sets give extremely unstable results
and are discarded from the analysis; it is likely that their initial configurations happen to
have a very small superposition on |ψ0〉. It turns out that A0 and A1 often give unstable fit
results and are not consistent with each other and with other Ai ; therefore we exclude them
from the analysis.

7. Data analysis and discussion

We study the behaviour of E1 versus L at fixed u. We fit the exact data for 8 � L � 26 to one
of the forms

LE1(L) = c + a1L
−ν + a2L

−2ν (34)

(for the massless phase) and

E1(L) = c + a1 exp(−µ1L) + a2 exp(−µ2L) (35)

(for the massive phase). We discriminate the phase by the value of χ2 of the fit and by
consistency of the fit, extrapolated to large L, with Monte Carlo data.
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Figure 4. E1 versus L for u = 0.4. Both χ2 and MC data clearly favour the massive phase.
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Figure 5. E1 versus L for u = 0.9. Both χ2 and MC data clearly favour the massless phase.

Two typical examples are shown in figures 4 and 5 where we show the results of the
analysis at the two points u = 0.4 and u = 0.9. The former value is clearly in the massive
phase, the latter in the massless one. This is consistent with figure 2 at all considered u values,
i.e., from 0.1 to 1.0 with 0.1 spacing. Of course, the discrimination in the critical region
u 
 0.7 is more difficult and less clear. In the massless phase, the determination of ν is quite
imprecise; it favours values ν ∼ 1/2, although, i.e., for u = 1 it is also compatible with ν = 1.
(In the massive phase, the ‘wrong’ exponential fit often gives a negative ν.)

A combination of the exact diagonalization and Monte Carlo data is summarized in
figure 6. In each panel we have shown in a log–log scale the ED data and the three points
from Monte Carlo (L = 32, 48 and 64) versus L.

The left panel contains data at u = 0.1–0.6. The ED data at 0.1–0.3 bend in the upward
direction suggesting convergence of E1 to a finite positive limit as L → ∞. This conclusion
is strongly supported by MC data. The bending is not visible at u = 0.4, 0.5 and 0.6, but
again MC data suggest the same asymptotic behaviour.
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Figure 6. Exact diagonalization and Monte Carlo data for E1(u, L) versus L in a log–log scale at
u = 0.1–1.0 in steps 
u = 0.1.

The right panel of figure 6 shows the remaining values u = 0.7–1.0. In this case, the
ED data bend in the downward direction in agreement with an algebraic decay of E1 with
the lattice size. This is confirmed by the MC points that smoothly extend this trend. In other
words, at the explored lattice sizes, there are no signal for a plateau in E1.

We also find remarkable that the special point u∗ 
 0.69 singled out by the exact
diagonalization analysis remains a sort of separator point between two qualitatively different
behaviours also after the inclusion of the Monte Carlo data points.

8. Summary and discussion

In summary, we have investigated the RPM away from its integrable point. First, we have
extended the available results from exact diagonalization of the non-local RPM Hamiltonian.
As a further step, we have exploited Monte Carlo methods to obtain spectral information on
the Hamiltonian from the temporal decay of stochastic averages of various observables.

As suggested in [1], we have found evidence for a drastic change of behaviour of the
system at the intermediate adsorption/desorption rate ratio u∗ 
 0.69. The analysis of data on
lattices up to 64 sites long has confirmed rather clearly that the RPM is in a massive phase for
u < u∗, where a plateau can be seen in the plot of E1 versus L. The region u∗ < u � 1, where
our data show a steady decrease in E1, is more difficult to analyse. Monte Carlo simulations
cannot exclude that E1(u, L) reaches a positive asymptotic value at a typical lattice size
growing rapidly as u → 1. To exclude such a scenario it would be necessary to investigate the
phase diagram of the RPM with other techniques able to reach very large lattices. We believe
that a determination of E1 from Monte Carlo simulations is not feasible on lattices much
larger than the length we explored. However, it would be possible to measure static averages
of typical non-local quantities, like cluster distributions in the interface configurations, with a
good accuracy on quite larger lattices. Preliminary results along this line seem to suggest the
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existence of a single massive phase for all u < 1 [11]. If such a scenario were confirmed, the
Raise and Peel model would be an interesting example of very slow convergence to criticality
in the infinite volume limit, presumably related to the non-locality of the model. We emphasize
again that the RPM is non-local at generic u because of the occurrence of avalanches. This
means that the Hamiltonian H does not describe a lattice model with local interaction and it is
not straightforward to apply field theory techniques. Only at the TL point u = 1, the hidden
loop algebra permits a straightforward and clean analytical investigation. Off integrability,
some better degrees of freedom must be identified for an effective description of the avalanche
dynamics.

Apart from these speculations, we believe that our proposal for a direct measure of E1

is valuable since the gap is often an important quantity to be measured on critical discrete
models. In principle, indeed, the strategy described in this paper could be applied to more
involved versions of the RPM. In particular, it would be interesting to analyse the role of
boundary conditions as discussed in [10].
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